棋牌游戏赚钱-津门棋牌馆

Irreducible approximation of Toeplitz operators and matrices

發(fā)布時(shí)間:2023-12-05 點(diǎn)擊次數(shù):

  報(bào)告題目:Irreducible approximation of Toeplitz operators and matrices

  報(bào)告人:朱森教授

  報(bào)告時(shí)間:2023.12.7 14:30-15:30

  報(bào)告地點(diǎn):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 104報(bào)告廳

  報(bào)告人簡(jiǎn)介:朱森,吉林大學(xué)數(shù)學(xué)學(xué)院教授,博士生導(dǎo)師. 主持國(guó)家自然科學(xué)基金青年、面上等項(xiàng)目. 近年來(lái)主要從事線性算子的復(fù)對(duì)稱性、隨機(jī)理論等方面的研究,在 J. Funct. Anal., J. London Math. Soc., Math. Ann., Math. Z, Sci. China Math., Trans. AMS等雜志發(fā)表系列論文.

  報(bào)告內(nèi)容簡(jiǎn)介:
  The classification of the reducing subspaces of analytic Toeplitz operators on the classical Hardy space $H^2$ was completed in the 1970s due to work by Cowen and by Thomson. As for the reducing subspaces of non-analytic Toeplitz operators, to the best of our knowledge, there is no result in the literature so far.
  We initiate to describe the reducing subspaces of Toeplitz operators via an approximation approach, showing that in the class of Toeplitz operators with continuous symbols those irreducible ones constitute a dense $G_\delta$. Our result depends on a finite-dimensional approximation result, which asserts that in the class of $n\times n$ Toeplitz matrices those irreducible ones constitute an open dense subset.


百家乐程序开户发| 哪家百家乐官网最好| 大发888网页多少| 百家乐官网游戏网站| 狮威百家乐娱乐网| 明升| 澳门百家乐游戏皇冠网| 毕节市| 破战百家乐的玩法技巧和规则| 刚察县| 开百家乐骗人吗| 百家乐官网投注方法网| 百家乐皇室百家乐| 百家乐官网998| 博雅德州扑克下载| 网络百家乐最安全| 游艇会百家乐官网的玩法技巧和规则 | 大发888注册送钱| 澳门百家乐官网官方网址| 百家乐和怎么算输赢| 赌百家乐官网的心得体会| 威尼斯人娱乐城赌百家乐| 百家乐路单打法| 宁河县| 大发888备用网站| 现金百家乐破解| 真人百家乐官网蓝盾娱乐场| 立博网站| 百家乐怎么玩| 做生意家里摆什么招财| 888真人赌博| 新太阳城娱乐| 哪个百家乐网站最大| 哪个百家乐官网技巧平台信誉好 | 365体育在线投注| 游戏机百家乐下载| 八卦24方位| 百家乐官网娱乐求指点呀| 天下足球网| 大发888 在线登陆| 戒掉百家乐的玩法技巧和规则|