棋牌游戏赚钱-津门棋牌馆

Irreducible approximation of Toeplitz operators and matrices

發(fā)布時(shí)間:2023-12-05 點(diǎn)擊次數(shù):

  報(bào)告題目:Irreducible approximation of Toeplitz operators and matrices

  報(bào)告人:朱森教授

  報(bào)告時(shí)間:2023.12.7 14:30-15:30

  報(bào)告地點(diǎn):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 104報(bào)告廳

  報(bào)告人簡(jiǎn)介:朱森,吉林大學(xué)數(shù)學(xué)學(xué)院教授,博士生導(dǎo)師. 主持國(guó)家自然科學(xué)基金青年、面上等項(xiàng)目. 近年來(lái)主要從事線性算子的復(fù)對(duì)稱性、隨機(jī)理論等方面的研究,在 J. Funct. Anal., J. London Math. Soc., Math. Ann., Math. Z, Sci. China Math., Trans. AMS等雜志發(fā)表系列論文.

  報(bào)告內(nèi)容簡(jiǎn)介:
  The classification of the reducing subspaces of analytic Toeplitz operators on the classical Hardy space $H^2$ was completed in the 1970s due to work by Cowen and by Thomson. As for the reducing subspaces of non-analytic Toeplitz operators, to the best of our knowledge, there is no result in the literature so far.
  We initiate to describe the reducing subspaces of Toeplitz operators via an approximation approach, showing that in the class of Toeplitz operators with continuous symbols those irreducible ones constitute a dense $G_\delta$. Our result depends on a finite-dimensional approximation result, which asserts that in the class of $n\times n$ Toeplitz matrices those irreducible ones constitute an open dense subset.


太阳城娱乐网88| 美女百家乐的玩法技巧和规则| 乐宝百家乐官网的玩法技巧和规则 | 7m足球比分| 河北省| 现场百家乐的玩法技巧和规则| 现金百家乐官网破解| 金龍百家乐的玩法技巧和规则 | 88百家乐现金网| 真钱游戏网| 百家乐科学打| 百家乐官网平预测软件| 百家乐官网破解辅助| 基础百家乐官网的玩法技巧和规则| 载大发888软件| 杰克百家乐玩法| 万宝路百家乐官网的玩法技巧和规则| 博彩e族| 大发888注册送彩金| 赌博百家乐秘笈| 百家乐官网咋样赢钱| 百家乐官网赌博游戏平台| 永胜县| 白金国际娱乐城| 死海太阳城酒店| 做生意带什么装饰招财| 博彩通百家乐官网概率| 玩百家乐输了| 24向山九宫格图| 百家乐官网奥| 真人百家乐官网怎么对冲| 亲朋棋牌完整版下载| 中山水果机定位器| 百家乐官网街机游戏下载| 绿春县| 香港六合彩码报| 威尼斯人娱乐场 送2688元礼金领取lrm64 | 免费百家乐追号工具| 速博百家乐的玩法技巧和规则 | 百家乐官网去哪里玩最好| 百家乐官网真人投注网站|