棋牌游戏赚钱-津门棋牌馆

Computational Quantum Mechanics in Phase Space — An Attempt to Break the Curse of Dimensionality

發布時間:2024-04-03 點擊次數:

標題:Computational Quantum Mechanics in Phase Space — An Attempt to Break the Curse of Dimensionality

報告時間:2024年04月03日(星期三)10:00-11:00

報告地點:人民大街校區數學與統計學院二樓會議室

主講人:邵嗣烘

主辦單位:數學與統計學院

報告內容簡介:

  As a permanent goal and a tireless direction of computational mathematics, developing an accurate and stable high-dimensional solver has been attracting more and more attentions in recent years due to the urgent need in e.g., quantum science and high energy density physics. This talk represents our preliminary attempts to break the curse of dimensionality (CoD) which poses a fundamental obstacle to high-dimensional numerical simulations. More specifically, we will report some recent progress in both grid-based deterministic and particle-based stochastic methods for simulating high-dimensional Wigner quantum dynamics. A massively parallel solver, termed the characteristic-spectral-mixed scheme, is proposed to evolve the Wigner-Coulomb system in 6-D phase space. Within particle-based stochastic simulations, CoD, causing the unattainable exponential wall, reappears as the numerical sign problem. To this end, we propose a SPA (Stationary Phase Approximation) + SPADE (Sequential-clustering Particle Annihilation via Discrepancy Estimation) strategy is to overcome the numerical sign problem where it has been translated into a NP-hard problem that may have approximate solutions. Simulations of the proton-electron couplings in 6-D and 12-D phase space demonstrate the accuracy and the efficiency of our particle-based stochastic methods.

主講人簡介:

  邵嗣烘,北京大學博雅特聘教授,畢業于北京大學數學科學學院并獲得理學學士和博士學位,先后到訪過北卡羅萊那大學夏洛特分校,香港科技大學,普林斯頓大學、塞維利亞大學和香港中文大學等。主講《數學分析I-III》,《數學模型》,《高維數值方法》,《組合最優化算法》,《譜方法》和《計算流體力學》等課程。主要開展面向智能、量子和計算的交叉融合研究,落腳點在基礎的數學理論和高效的算法設計,強調離散數學結構的設計、分析和應用。具體研究領域包括:高維數值方法、離散建模與組合優化、計算量子力學、圖譜理論及算法、微分方程數值解和計算復雜性等,是國家級高層次領軍人才,獲國家自然科學基金面上和青年等項目資助。2019年入選北京智源人工智能研究院“智源青年科學家”。2020年獲北京大學優秀博士學位論文指導老師。2021年獲北京大學黃廷芳/信和青年杰出學者獎。曾獲中國計算數學學會優秀青年論文一等獎,北京大學學術類創新獎,北京大學優秀博士學位論文三等獎,寶潔教師獎和北京大學優秀班主任等。



百博百家乐的玩法技巧和规则| 威尼斯人娱乐城游戏平台| 澎湖县| 蓝盾百家乐官网代理| 威尼斯人娱乐城博彩| 星期8百家乐官网的玩法技巧和规则 | 神娱乐百家乐的玩法技巧和规则| 百家乐官网桌布橡胶| 大发888下载 df888| 百家乐网真人真钱群| 澳门百家乐官网有没有假| 天鸿德州扑克游戏币| 象山县| 百家乐第三张规则| 百家乐官网好津乐汇| 澳门赌场筹码| 线上百家乐官网怎么玩| 大发888使用条款| 百家乐注册赠分| 澳门百家乐官网的公式| 娱乐城网| 威尼斯人娱乐网反| 百家乐官网赌场论坛博客| 凭祥市| 太阳城网站| KTV百家乐的玩法技巧和规则 | 百家乐官网网上赌博网| 四海资迅| 能赚钱的棋牌游戏| 真人百家乐对决| 百家乐官网解析| 乐中百家乐的玩法技巧和规则| 风水24山详解| 百家乐官网预约| 百家乐官网娱乐城玩法| 免费百家乐预测工具| 百家乐澳门路规则算法| 风水24山分房图| 旅百家乐官网赢钱律| 百家乐官网真人百家乐官网皇冠| 赌场百家乐官网欺诈方法|